Exercise Sheet 3: Amplitude Modulation

Exercise 1

An AM transmitter broadcast the following signal:

 $s_{AM}(t) = 100\cos(2\pi \cdot 3.55 \cdot 10^6 t) + 43.5\cos(2\pi \cdot 3.545 \cdot 10^6 t) + 43.5\cos(2\pi \cdot 3.555 \cdot 10^6 t)$

- 1. Determine the Upper Side-Band frequency and the modulating frequency.
- 2. Calculate the modulation index and the bandwidth of the modulated signal.
- 3. Plot the waveform of this signal and its spectrum.
- 4. Calculate the power of the carrier and each sideband if the transmitted power is 38W.

Exercise 2

On an oscilloscope, we observe the variations of an AM signal. A maximum voltage of 4.5V and a minimum voltage of 0.5V are read, with an HF frequency of 100kHz and a LF frequency of 10kHz. Deduce the mathematical expression of the signal and plot its spectrum.

Exercise 3

The spectrum of an AM signal is displayed on a spectrum analyzer:

The input resistance of the spectrum analyzer is 50Ω .

- 1. Determine the carrier frequency and the useful signal frequency.
- 2. Determine the bandwidth of the useful signal.
- 3. Calculate the useful power and the modulation efficiency.
- 4. Write the mathematical expression of this signal.
- 5. Calculate the modulation index.

Exercise 4

Consider the following circuit:

- 1. Determine the expression for the voltage V_3 as a function of V_1 and V_2 .
- 2. Using a Taylor series expansion of the exponential function: $e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!}$, find the expression for the current i_c as a function of v_{bc} .
- 3. Deduce the expression of i_c as a function of V_1 and V_2 .
- 4. Given: $V_1(t) = \cos(\omega_1 t)$ and $V_2(t) = A\cos(\omega_2 t)$ with $\omega_1 \gg \omega_2$. Plot the spectrum of i_c .
- 5. On the same spectrum, plot the filter response suitable for amplitude modulation with this circuit. Provide its center frequency and bandwidth.
- 6. Find the expression for i_o , the current at the filter output, and deduce the modulation index.
- 7. Calculate the average power of the AM signal represented by i_o when it passes through a 50Ω resistance.

Exercise 5

At the input of the circuit below, the voltage applied is:

$$v_i(t) = A_c \cos(\omega_c t) + A_m \cos(\omega_c t + \omega_m t)$$

- 1. Calculate $v_o(t)$.
- 2. Deduce the function of this circuit and the characteristics of the output filter.

Exercise 6

To demodulate a signal e(t), it is injected into a mixer with a gain K, whose second input comes from a local oscillator with the same frequency ω_0 as the carrier $e_0(t) = E_0 \sin(\omega_0 t)$.

The output of the mixer is given by : $u(t) = K \cdot e(t) \cdot e_0(t)$

The modulated signal is: $e(t) = E(1 + m\cos(\Omega t))\sin(\omega_0 t)$, where F is the frequency of the modulating signal $F = \frac{\Omega}{2\pi}$ and $f_0 = \frac{\omega_0}{2\pi}$ is the carrier frequency.

1. Write the expression for u(t) and plot its frequency spectrum.

2. If $f_0 = 1$ MHz and F = 1 kHz, the mixer is followed by a low-pass filter with a cutoff frequency of 1500 Hz and DC component suppression. What is the expression for its output voltage s(t)?

3. Calculate the average power S of the signal s(t).

To measure the noise at the output of the demodulator, the following circuit is used in the absence of the modulated signal:

The low-pass filter at the output of the mixer is the same as in question 2. Assume that the noise $n_i(t)$ is sinusoidal with a frequency f_n such that $f_0 - F < f_n < f_0 + F$. The expression of the noise $n_i(t)$ is: $n_i(t) = A_n \sin(\omega_n t)$, with $f_n = \frac{\omega_n}{2\pi}$.

- 4. Write the expression of $n'_{o}(t)$ at the output of the mixer. What is its spectrum?
- 5. Deduce the expression of $n_o(t)$ at the output of the low-pass filter.
- 6. Calculate the average noise power at the output N.
- 7. From these calculations, deduce the signal-to-noise ratio at the output $(S/N)_o$ in dB if E=10 V, $A_n=0.8$ V, and m=30%.