Exercise Sheet 4: Frequency Modulation

Exercise 1

Given the expression of a frequency-modulated signal:

$$s(t) = 10\cos(6283200t - 5\cos(3141t))$$

Determine:

- 1. The expression of its instantaneous frequency.
- 2. The carrier frequency and the modulating signal frequency.
- 3. The frequency deviation and the peak deviation.
- 4. The modulation index.
- 5. The spectrum of the modulated signal and its bandwidth.

Exercise 2

Given a carrier signal: $s_c(t) = 5\cos(2\pi 450 \times 10^3 t)$

This carrier is frequency-modulated by: $s_m(t) = A\cos(6\pi 10^3 t)$ with a modulation index m = 1.

- 1. Find the amplitude of the modulating signal if it is amplified 1000 times before modulation.
- 2. Calculate the instantaneous frequency of the FM signal $s_{\rm FM}(t),$ then deduce its expression.
- 3. Calculate the maximum frequency, minimum frequency, peak frequency deviation, and bandwidth of $s_{\rm FM}(t)$.
- 4. Sketch the spectrum of the FM signal.
- 5. The response of a tuned circuit has a nearly linear slope, with a gain of 0.8 at 500 kHz and 0.6 at 400 kHz. Determine the expression for this slope.
- 6. We apply $s_{FM}(t)$ at the input of this tuned circuit. Determine the expression of the output signal. How can we recover $s_m(t)$?

Exercise 3

Consider an oscillator based on a varicap diode with an operating frequency of:

$$f_0 = \frac{1}{2\pi\sqrt{L(C \parallel C_d)}}$$

The capacitance of the varicap diode is given by:

$$C_d = \frac{k}{\sqrt{V_0 + V_p}}$$

where k and V_0 are constants, and V_p is the bias voltage of the diode. We give the following values: $L = 0.32 \ \mu H$, $C = 10\ 000 \ pF$, $V_0 = 0.36 \ V$, $k = 9 \times 10^{-10}$

1. Express the oscillation frequency f_0 of the circuit and show that it can be written in the form:

$$f_0(V_p) = A\sqrt{B + \sqrt{D + V_p}}$$

Find the values of A, B, and D.

- 2. Determine the value of V_p to achieve an oscillation frequency $f_0=15$ MHz.
- 3. The voltage V_p is the sum of a DC voltage V = 7 V and a sinusoidal voltage v(t) with an amplitude of $V_m = 0.2$ V and a frequency of $f_m = 20$ kHz.
 - (a) Show that the oscillator is frequency-modulated. Determine the carrier frequency.
 - (b) Calculate the modulation index of the resulting FM signal and the bandwidth necessary to transmit this signal.