Exercise Sheet 5: Noise in Communication Systems

Exercise 1

A resistor $R = 10 k\Omega$ is placed in an environment at a temperature T = 20°C.

1. Calculate the thermal noise voltage produced by this resistor in a bandwidth $B=100\,\mathrm{kHz}.$

The resistor is connected to the input of a two port circuit with the following characteristics: Gain $G=20\,\mathrm{dB}$, Bandwidth B, Input resistance R and assumed noiseless.

- 2. Calculate the noise power at the output of the a two port circuit in dBm.
- 3. What is the nature of the noise at the a two port circuit output? Sketch its frequency spectrum.
- 4. In reality, this circuit is noisy, and the measured noise power at its output is $-130.8 \,\mathrm{dB}$. Calculate its equivalent noise temperature and noise factor in dB.

Exercise 2

We want to measure the equivalent temperature T_e of a quadripole with gain G. The following method is used:

- (A) Hot Measurement: A matched resistor R at a temperature T_1 is connected to the input of the quadripole. The noise power N_1 is measured at the output.
- (B) Cold Measurement: R is replaced with an identical resistor at a lower temperature T_2 . The noise power N_2 is measured at the output.

- 1. Express T_e as a function of N_1 , N_2 , T_1 , and T_2 .
- 2. An X-band amplifier has a gain of 20 dB and a 1 GHz bandwidth. Using the described method, the measured noise powers are:
 - $N_1 = -62 \, \text{dBm at } T_1 = 290 \, \text{K},$
 - $N_2 = -64.7 \,\mathrm{dBm}$ at $T_2 = 77 \,\mathrm{K}$.

Calculate the equivalent noise temperature and noise factor (in dB) of this amplifier.

3. If the amplifier is used with a source having an equivalent noise temperature of $T = 450 \,\mathrm{K}$, what is the output noise power from the amplifier, in dBm?

Exercise 3

Consider the following two systems:

- 1. Calculate the gain and noise factor for each system.
- 2. Compare the results.

Exercise 4

The following system consists of an amplifier, a band-pass filter, and a demodulator. The system operates at a temperature $T=290\,\mathrm{K}$ with a bandwidth of $10\,\mathrm{MHz}$. The input impedance is $50\,\Omega$.

- 1. Calculate the noise factor of the system.
- 2. The input of this system receives a noise signal from an antenna with an equivalent noise temperature $T_A = 150 \,\mathrm{K}$. Find the noise power at the output.
- 3. If a minimum SNR of 20 dB is required at the output, calculate the minimum signal voltage that must be applied at the input.

Exercise 5

Consider a communication link operating with the following parameters:

- The transmitted signal has an average power of $S = 10 \,\mathrm{mW}$.
- The noise power spectral density of $10^{-20}\,\mathrm{W/Hz}$.
- The system has a bandwidth of $B = 1 \,\mathrm{MHz}.$
- 1. Compute the total noise power N in the system's bandwidth.
- 2. Calculate the Signal-to-Noise Ratio (SNR) at the receiver, both in linear scale and in decibels (dB).
- 3. If the system's bandwidth is doubled while keeping the transmitted signal power constant, what is the new SNR? Explain how bandwidth affects the SNR.
- 4. Suppose the communication link requires an SNR of at least 20 dB for reliable transmission. Determine the minimum signal power S_{\min} required to achieve this SNR with the original bandwidth.